Testing with Expected Inputs

These are inputs that you expect the function to handle in its normal
operation. If you're writing a function to calculate the square of a
number, for instance, typical inputs would be numbers.

function square() {
let num = prompt('Give me a number')

alert(num * num)

If you expected the user to input a number from 1 to 9, you would
test the code with a few numbers within that range.

Your commit message could look something like this:

Summary: Expected testing
Description: Tested the square() function with expected inputs of
2, 5, and 7 and got the correct outputs of 4, 25, and 49.

Testing with Boundary Inputs

These are inputs at the extremes of what you expect the function to
handle. If you're writing a function to check whether a number is
within a certain range, you would test it with numbers right at the
boundaries. This is because for many programs, bugs or
unexpected behaviour can occur for these values.

If you had the code above, and you expected a number from 1 to 9,
you would test 1 and 9 as inputs specifically.

Your commit message could look something like this:

Testing with Invalid Inputs

These are inputs that your code shouldn't be able to handle. It's
important to test these to ensure your code fails gracefully and
doesn't produce incorrect results or crash the entire program.

For code that expects a number, invalid inputs could include a
string, or null (nothing).

To improve your code further, you should write your code so that it
handles invalid input correctly. It should provide a message to the
user, or give them another chance to input the correct value.

° °
function square() { COdln WIth
let num = prompt('Give me a number') JS
if (num > 0 && num < 10) {
alert(num * num)
} else {
alert('That is outside the range.')

| U5

Improvements
L IO

function square() {
let num = prompt('Give me a number')

if (typeof num == 'number') {
alert(num * num)

Improving code is an important step towards maintaining a robust,

e TR e G &) U 1) flexible, and sustainable codebase. It's not just about making the
} code work—it's also about making it readable, maintainable, and
scalable.

} else {

Inside are some key principles and practices to improve your code.

Your commit message could look something like this: e Eliminating Magic Numbers

e Writing Comments

Summary: Boundary testing
Description: Tested the square() function with boundary inputs of
1 and 9, and got the correct outputs of 1 and 81.

Summary: Invalid testing e Testing Code
Description: Tested the square() function with invalid inputs of -50,
0, 10, 1000, “hello” and nothing and got the correct error message

output for each one..

Eliminate Magic Numbers -
Use Constants

Magic numbers are numbers that appear in your code without any
explanation. For example, if you've written a line like this:

let total = total * 7

It's not clear what 7 is. Why is it 7 and not 6 or 8?7

To someone else reading your code - or to you, when you come
back to your code after a while - it won't be clear why you've chosen
that number.

To eliminate magic numbers, we can define them as constants at
the beginning of the program, giving them a meaningful name.

Constants are variables whose values don't change once they're
set. In JavaScript, constants are declared using the const keyword
followed by the variable name and value.

For instance, if the 7 was representing the number of days in a
week, you could write:

const daysInTheWeek = 7

at the top of your code and then use daysInTheWeek instead of
the unexplained 7.

o000

let total = total * daysInTheWeek

Constants make your code more readable and maintainable
because they provide meaningful names for values that won't
change. When you use constants instead of hardcoding values, it's
easier to understand the purpose of those values, and if you need to
change the value, you can do it in one place rather than hunting
through your code for all instances where it was used.

Eliminate Magic Numbers -
Use Derived Values

The use of derived values, such as arrayName.length(), can help to
eliminate the need for these magic numbers by calculating the
number as the code is running.

For instance, suppose you have an array of students in a class, and

you want to loop through the array to print each student's name. A
non-ideal way (with magic numbers) would look like this:

let students = ['Alice', 'Barbara', 'Charlie', 'Dorothy', 'Eva'l

let index = 0

while (1 < 5) {
alert(students[index])
index = index + 1

In this case, 5 is a magic number. It represents the number of
students, but it's hardcoded, making it unclear what it means and
potentially leading to errors if the size of the students array changes.

A better way to write this code would be to use the derived value
students. length instead of the magic number:

let index = 0

while (1 < students.length {
alert(students[index])
index = index + 1

Now the loop will automatically adjust to the size of the students
array. If you add or remove students from the array, the loop will still
work correctly without needing to adjust the 5 to a new number.

(JON
let students = ['Alice', 'Barbara', 'Charlie', 'Dorothy', 'Eva'l

let studentIndex = prompt('Give me an index number.')

if (studentIndex >= students.length) {
alert('That is not a valid index number.')

}

Write Comments

Comments are a key part of making your code understandable to
others, as well as to your future self.

They should explain why the code is doing something, not what it's
doing. The code itself shows what it's doing.

Here are some guidelines on writing good comments:

1. Start with a general comment at the top of your code file
describing what the code does.

2. Comment on each function to explain what it does, what its
inputs and outputs are.

3. Write comments for complex code blocks to explain how
they work.

4. Avoid unnecessary comments for code that is
self-explanatory.

Here are some examples of bad comments:
e // Input.
e // Adds a number.
e // Checks.

Here are some examples of good comments:
® // Calculates the Fibonacci sequence up to
the specified maximum.
e // Loops over the array and adds GST to all
of the sale prices.
e // Shows an error message for any invalid
inputs.

